
Fully Homomorphic Encryption without Squashing
Using Depth-3 Arithmetic Circuits

Craig Gentry and Shai Halevi
IBM T.J. Watson Research Center

Abstract—We describe a new approach for constructing fully
homomorphic encryption (FHE) schemes. Previous FHE schemes
all use the same blueprint from [Gentry 2009]: First construct
a somewhat homomorphic encryption (SWHE) scheme, next
“squash” the decryption circuit until it is simple enough to
be handled within the homomorphic capacity of the SWHE
scheme, and finally “bootstrap” to get a FHE scheme. In all
existing schemes, the squashing technique induces an additional
assumption: that the sparse subset sum problem (SSSP) is hard.

Our new approach constructs FHE as a hybrid of a SWHE
and a multiplicatively homomorphic encryption (MHE) scheme,
such as Elgamal. Our construction eliminates the need for the
squashing step, and thereby also removes the need to assume
the SSSP is hard. We describe a few concrete instantiations of
the new method, including a “simple” FHE scheme where we
replace SSSP with Decision Diffie-Hellman, an optimization of
the simple scheme that let us “compress” the FHE ciphertext
into a single Elgamal ciphertext(!), and a scheme whose security
can be (quantumly) reduced to the approximate ideal-SIVP.

We stress that the new approach still relies on bootstrapping,
but it shows how to bootstrap without having to “squash”
the decryption circuit. The main technique is to express the
decryption function of SWHE schemes as a depth-3 (

∑∏∑
)

arithmetic circuit of a particular form. When evaluating this
circuit homomorphically (as needed for bootstrapping), we tem-
porarily switch to a MHE scheme, such as Elgamal, to handle the∏

part. Due to the special form of the circuit, the switch to the
MHE scheme can be done without having to evaluate anything
homomorphically. We then translate the result back to the SWHE
scheme by homomorphically evaluating the decryption function
of the MHE scheme. Using our method, the SWHE scheme only
needs to be capable of evaluating the MHE scheme’s decryption
function, not its own decryption function. We thereby avoid the
circularity that necessitated squashing in the original blueprint.

I. INTRODUCTION

Fully homomorphic encryption allows anyone to perform
arbitrarily computations on encrypted data, despite not having
the secret decryption key. Several fully homomorphic encryp-
tion (FHE) schemes appeared recently [4], [6], [14], [16], all
following the same blueprint as Gentry’s original construction
[3], [4]:

1. SWHE. Construct a somewhat homomorphic encryption
(SWHE) scheme – roughly, a scheme that can evaluate low-
degree polynomials homomorphically.

2. Squash. “Squash” the decryption function of the SWHE
scheme, until decryption can be expressed as polynomial of
degree low enough to be handled within the homomorphic
capacity of the SWHE scheme, with enough capacity left over
to evaluate a NAND gate. This is done by adding a “hint” to

the public key – namely, a large set of elements that has a
secret sparse subset that sums to the original secret key.

3. Bootstrap. Given a SWHE scheme that can evaluate its
decryption function (plus a NAND), apply Gentry’s transfor-
mation to get a “leveled”1 FHE scheme.

In this work we construct leveled FHE by combining a
SWHE scheme with a “compatible” multiplicatively homo-
morphic encryption (MHE) scheme (such as Elgamal) in a
surprising way. Our construction still relies on bootstrapping,
but it does not use squashing and does not rely on the assumed
hardness of the sparse subset sum problem (SSSP). Using the
new method, we construct a “simple” leveled FHE scheme
where SSSP is replaced with Decision Diffie-Hellman. We also
describe an optimization of this simple scheme where at one
point during the bootstrapping process, the entire leveled FHE
ciphertext consists of a single MHE (e.g., Elgamal) ciphertext!
Finally, we show that it is possible to replace the MHE scheme
by an additively homomorphic encryption (AHE) scheme that
encrypts discrete logarithms. This allows us to construct a
leveled FHE scheme whose security is based entirely on
the worst-case hardness of the shortest independent vector
problem over ideal lattices (ideal-SIVP) (compare [5]). As
in Gentry’s original blueprint, we obtain a pure FHE scheme
by assuming circular security. At present, our new approach
does not improve efficiency, aside from the optimization that
reduces the ciphertext length.

A. Our Main Technical Innovation

Our main technical innovation is a new way to evaluate
homomorphically the decryption circuits of the underlying
SWHE schemes. Decryption in these schemes involves com-
puting a threshold function, that can be expressed as a mul-
tilinear symmetric polynomial. Previous works [4], [6], [14],
[16] evaluated those polynomials in the “obvious way” using
boolean circuits. Instead, here we use Ben-Or’s observation
(reported in [10]) that multilinear symmetric polynomials can
be computed by depth-3 (

∑∏∑
) arithmetic circuits over

Zp for large enough prime p. Let ek(·) be the n-variable
degree-k elementary symmetric polynomial, and consider a
vector ~x = 〈x1, . . . , xn〉 ∈ {0, 1}n. The value of ek(~x) is
simply the coefficient of zn−k in the univariate polynomial

1In a “leveled” FHE scheme, the size of the public key is linear in the
depth of the circuits to evaluate. A “pure” FHE scheme (with a fixed-sized
public key) can be obtained by assuming “circular security” – namely, that it
is safe to encrypt the leveled FHE secret key under its own public key.



P (z) =
∏n
i=1(z + xi). This coefficient can be computed

by fixing an arbitrary set A = {a1, . . . , an+1} ⊆ Zp, then
evaluating the polynomial P (z) at the points in A to obtain
tj = P (aj), and finally interpolating the coefficient of interest
as a linear combination of the tj’s. The resulting circuit has
the form ek(~x) =

∑n+1
j=1 λjk

∏n
i=1(aj + xi) (mod p), where

λjk’s are the interpolation coefficients, which are some known
constants in Zp. Any multilinear symmetric polynomial over
~x can be computed as a linear combination of the ek(~x)’s, and
thus has the same form (with different λ’s).

By itself, Ben-Or’s observation is not helpful to us, since
(until now) we did not know how to bootstrap unless the
polynomial degree of the decryption function is low. Ben-
Or’s observation does not help us lower the degree (it actually
increases the degree). Our insight is that we can evaluate the∏

part by temporarily working with a MHE scheme, such as
Elgamal [2]. We first use a simple trick to get an encryption
under the MHE scheme of all the (aj +xi) terms in Ben-Or’s
circuit, then use the multiplicative homomorphism to multiply
them, and finally convert them back to SWHE ciphertexts
to do the final sum. Conversion back from MHE to SWHE
is done by running the MHE scheme’s decryption circuit
homomorphically within the SWHE scheme, which may be
expensive. However, the key point is that the degree of the
translation depends only on the MHE scheme and not on the
SWHE scheme. This breaks the self-referential requirement
of being able to evaluate its own decryption circuit, hence
obviating the need for the squashing step. Instead, we can
now just increase the parameters of the SWHE scheme until
it can handle the MHE scheme’s decryption circuit.

B. An Illustration of an Elgamal-Based Instantiation

Perhaps the simplest illustration of our idea is using Elgamal
encryption to do the multiplication. Let p = 2q + 1 be a safe
prime. Elgamal messages and ciphertext components will live
in QR(p), the group of quadratic residues modulo p. We also
use a SWHE scheme with plaintext space Zp. (All previous
SWHE schemes can be adapted to handle this large plaintext
space). We also require the SWHE scheme to have a “simple”
decryption function that can be expressed as a “restricted”
depth-3 arithmetic circuit. These terms are defined later in
Section II, for now we just mention that all known SWHE
schemes [4], [6], [14], [16] meet this condition

For simplicity of presentation here, imagine that the SWHE
secret key is a bit vector ~s = (s1, . . . , sn) ∈ {0, 1}n,
the ciphertext that we want to decrypt is also a bit vector
~c = (c1, . . . , cn) ∈ {0, 1}n, and that decryption works by first
computing xi ← si · ci for all i, and then running the

∑∏∑
circuit, taking ~x as input. Imagine that decryption simply
performs something like interpolation – namely, it computes
f(~x) =

∑n+1
j=1 λj

∏n
i=1(aj + xi), where the aj’s and λj’s are

publicly known constants in Zp.
To enable bootstrapping, we provide (in the public key) the

Elgamal secret key encrypted under the SWHE public key,
namely we encrypt the bits of the secret Elgamal exponent e
individually under the SWHE scheme. We also use a special

form of encryption of the SWHE secret key under the Elgamal
public key. Namely, for each secret-key bit si and each public
constant aj , we provide an ElGamal encryption of the value
aj + si ∈ Zp. The public values aj’s are chosen so that both
aj , aj + 1 ∈ QR(p), so that aj + si is always in the Elgamal
plaintext space.

Now let ~c ∈ {0, 1}n be a SWHE ciphertext that we want
to decrypt homomorphically. First, for each (i, j), we obtain
an Elgamal ciphertext that encrypts aj + (si · ci) as follows: if
ci = 0 then aj + (si · ci) = aj , so we simply generate a fresh
encryption of the public value aj . On the other hand, if ci = 1
then aj+(si ·ci) = aj+si, so we use the encryption of aj+si
from the public key. (Note how the “restricted” form of these
sums aj +xi makes it possible to put in the public key all the
Elgamal ciphertexts that are needed for these sums.)

Next we use Elgamal’s multiplicative homomorphism for
the
∏

part of the circuit, thus getting Elgamal encryptions of
the values λj · P (aj) (where P (z) =

∏
i(z + xi)). We then

convert these Elgamal encryptions into SWHE encryptions
of the same values in Zp by homomorphically evaluating
the Elgamal decryption, using the SWHE encryption of the
Elgamal secret exponent from the public key. Denote by ei the
i’th bit of the secret exponent e (so the public key includes an
SWHE encryption of ei), and let (y, z) = (gr,m ·g−er) be an
Elgamal ciphertext to be converted. We compute y2

i−1 mod p
for all i, then compute SWHE ciphertexts that encrypt the
powers

yei·2
i

= eiy
2i + (1− ei)y0 = ei(y

2i − 1) + 1,

and then use multiplicative homomorphism of the SWHE
scheme to multiply these powers and obtain an encryption of
ye. (This requires degree dlog qe). Finally, inside the SWHE
scheme, we multiply the encryption of ye by the known value
z, thereby obtaining a SWHE ciphertext that encrypts m.

At this point, we have SWHE ciphertexts that encrypt the
results of the

∏
operations – the values λj ·P (aj). We now use

the SWHE scheme’s additive homomorphism to finish off the
depth-3 circuit, thus completing the homomorphic decryption.
We can now compute another MULT or ADD operation,
before running homomorphic decryption again to “refresh” the
result, ad infinitum.

As explained above, using this approach the SWHE scheme
only needs to evaluate polynomials that are slightly more
complex than the MHE scheme’s decryption circuit. Specifi-
cally, for Elgamal we need to evaluate polynomials of degree
2 dlog qe. We can use any of the prior SWHE schemes from
the literature, and set the parameters large enough to handle
these polynomials. The security of the resulting leveled FHE
scheme is based on the security of its component SWHE and
MHE schemes.

We also show that by a careful choice of the constants aj ,
we can set things up so that we always have P (aj) = wj ·
P (a1)ej for some known constants ej , wj ∈ Zp. Hence we
can compute all the Elgamal ciphertexts at the output of the
Π layer given just the Elgamal ciphertext that encrypts P (a1),
which yields a compact representation of the ciphertext.



C. Leveled FHE Based on Worst-Case Hardness

We use similar ideas to get a leveled FHE scheme whose
security is based entirely on the (quantum) worst-case hardness
of ideal-SIVP. At first glance this may seem surprising: how
can we use a lattice-based scheme as our MHE scheme when
current lattice-based schemes do not handle multiplication
very well? (This was the entire reason the old blueprint
required squashing!) We get around this apparent problem by
replacing the MHE scheme with an additively homomorphic
encryption (AHE) scheme, applied to discrete logs.

In more detail, as in the Elgamal-based instantiation, the
SWHE scheme uses plaintext space Zp for prime p = 2q+ 1.
But p is chosen to be a small prime, polynomial in the security
parameter, so it is easy to compute discrete logs modulo p.
The plaintext space of the AHE scheme is Zq , corresponding
to the space of exponents of a generator g of Z∗p. Rather
than encrypting in the public key the values aj + si (as
in the Elgamal instantiation), we provide AHE ciphertexts
that encrypt the values DLg(aj + si) ∈ Zq , and use the
same trick as above to get AHE ciphertexts that encrypt the
values DLg(aj + (si · ci)). We homomorphically add these
values, getting an AHE encryption of DLg(λj ·P (aj)). Finally,
we use the SWHE scheme to homomorphically compute the
AHE decryption followed by exponentiation, getting SWHE
encryption of the values λj · P (aj), which we add within the
SWHE scheme to complete the bootstrapping.

As before, the SWHE scheme only needs to support
the AHE decryption (and exponentiation modulo the small
prime p), thus we don’t have the self-reference problem
that requires squashing. We note, however, that lattice-based
additively-homomorphic schemes are not completely error
free, so once must set the parameters so that it supports
sufficient number of summands. Since the dependence of the
AHE noise on the number of summands is very weak (only
logarithmic), this can be done without the need for squashing.
See Section C for more details on this construction.

II. DECRYPTION AS A DEPTH-3 ARITHMETIC CIRCUIT

Recall that, in Gentry’s FHE, we “refresh” a ciphertext c by
expressing decryption of this ciphertext as a function Dc(s)
in the secret key s, and evaluating that function homomorphi-
cally. Below, we describe “restricted” depth-3 circuits, sketch
a “generic” lattice based construction that encompasses known
SWHE schemes (up to minor modifications), and show how to
express its decryption function Dc(s) as a restricted depth-3
circuit over a large enough ring Zp. We note that Klivans and
Sherstov [9] have already shown that the decryption functions
of Regev’s cryptosystems [12], [13] can be computed using
depth-3 circuits.

A. Restricted Depth-3 Arithmetic Circuits

In our construction, the circuit that computes Dc(s) depends
on the ciphertext c only in a very restricted manner. By
“restricted” we roughly mean that the bottom sums in the
depth-3 circuit must come from a fixed (polynomial-size) set L
of polynomials, where L itself is independent of the ciphertext.

Thus, the bottom sums used in the circuit can depend on the
ciphertext only to the extent that the ciphertext is used to select
which and how many of the polynomials in L are used as
bottom sums in the circuit.

Definition 1 (Restricted Depth-3 Circuit). Let L =
{Lj(x1, . . . , xn)} be a set of polynomials, all in the same n
variables. An arithmetic circuit C is an L-restricted depth-3
circuit over (x1, . . . , xn) if there exists multisets S1, . . . , St ⊆
L and constants λ0, λ1, . . . , λt such that

C(~x) = λ0 +

t∑
i=1

λi ·
∏
Lj∈Si

Lj(x1, . . . , xn),

The degree of C with respect to L is d = maxi |Si| (we also
call it the L-degree of C).

Remark 1. In all our instantiations of decryption circuits for
known SWHE schemes, the Lj’s happen to be linear. However,
our generic construction in Section III does not require that
they be linear (or even low degree).

To express decryption as restricted circuit as above, we use
Ben-Or’s observation that multilinear symmetric polynomials
can be computed by restricted depth-3 arithmetic circuits
that perform interpolation. Recall that a multilinear symmetric
polynomial M(~x) is a symmetric polynomial where, for each
i, every monomial is of degree at most 1 in xi; there are
no high powers of xi. A simple fact is that every multilinear
symmetric polynomial M(~x) is a linear combination of the
elementary symmetric polynomials: M(~x) =

∑n
i=0 `i · ei(~x),

where ei(~x) is the sum of all degree-i monomials that are
the product of i distinct variables. Also, for every symmetric
polynomial S(~x), there is a multilinear symmetric polynomial
M(~x) that agrees with S(~x) on all binary vectors ~x ∈ {0, 1}.
The reason is that xki = xi for xi ∈ {0, 1}, and therefore all
higher powers in S(~x) can be “flattened”; the end result is
multilinear symmetric. The following lemma states Ben-Or’s
observation formally.

Lemma 1 (Ben-Or, reported in [10]). Let p ≥ n+1 be a prime,
let A ⊆ Zp have cardinality n + 1, let ~x = (x1, . . . , xn) be
variables, and denote LA

def
= {(a+ xi) : a ∈ A, 1 ≤ i ≤ n}.

For every multilinear symmetric polynomial M(~x) over Zp,
there is a circuit C(~x) such that:
• C is a LA-restricted depth-3 circuit over Zp such that
C(~x) ≡M(~x) (in Zp).

• C has n + 1 product gates of LA-degree n, one gate
for each value aj ∈ A, with the j’th gate computing the
value λj · P (aj) =

∏
i(aj + xi) for some scalar λj .

• A description of C can be computed efficiently given the
values M(~x) at all ~x = 1i0n−i.

The final bullet clarifies that Ben-Or’s observation is con-
structive – we can compute the restricted depth-3 representa-
tion from any initial representation that lets us evaluate M .

In some cases, it is easier to work with univariate polyno-
mials. The following fact, captured in Lemma 2, will be useful
for us: Suppose f(x) is an arbitrary univariate function and



we want to compute f(
∑
bi · ti), where the bi’s are bits and

the ti’s are small (polynomial). Then, we can actually express
this computation as a multilinear symmetric polynomial, and
hence a restricted depth-3 circuit in the bi’s.

Lemma 2. Let T, n be positive integers, and f(x) a univariate
polynomial over Zp (for p prime, p ≥ Tn + 1). Then there
is a multilinear symmetric polynomial Mf (·) on Tn variables
such that for all t1, . . . , tn ∈ {0, . . . , T},

f
(∑

i

biti
)

= Mf (b1, . . . , b1︸ ︷︷ ︸
t1 times

, 0, . . . , 0︸ ︷︷ ︸
T−t1 times

, . . . , bn, . . . , bn︸ ︷︷ ︸
tn times

, 0, . . . , 0︸ ︷︷ ︸
T−tn times

)

for all~b ∈ {0, 1}n. Moreover, a representation of Mf as a LA-
restricted depth-3 circuit can be computed in time poly(Tn)
given oracle access to f .

Proof: Define a Tn-variate polynomial g : ZTnp → Zp as
g(~x) = f(

∑
xi), then g is symmetric and we have

f
(∑

i

biti
)

= g
(
b t11 0T−t1 . . . b tnn 0T−tn

)
.

As noted above, there is a multilinear symmetric polynomial
Mf (~x) that agrees with g(~x) on all 0-1 inputs, By Lemma 1,
for any A ⊆ Zq of size Tn + 1 we can compute an LA-
restricted depth-3 circuit representation of Mf (~x) by evaluat-
ing g(~x) over the vectors ~x = 1i0Tn−i, which can be done
using the f -oracle.

B. Lattice-Based Somewhat-Homomorphic Cryptosystems

In GGH-type [7] lattice-based encryption schemes, the
public key describes some lattice L ⊂ Rn and the secret key
is a rational matrix S ∈ Qn×n (related to the dual lattice
L∗). In the schemes that we consider, the plaintext space
is Zp for a prime p, and an encryption of m is a vector
~c = ~v + ~e ∈ Zn, where ~v ∈ L and ~e is a short noise vector
satisfying ~e ≡ ~m (mod p). It was shown in [3] that decryption
can be implemented by computing ~m ← ~c − d~c · Sc mod p,
where d·c means rounding to the nearest integer. Moreover
the parameters can be set to ensure that ciphertexts are close
enough to the lattice so that the vector ~c · S is less than
1/2(N + 1) away from Zn.

Somewhat similarly to [4], such schemes can be modified
to make the secret key a bit vector ~s ∈ {0, 1}N , such that
S =

∑N
i=1 si · Ti with the Ti’s public matrices. For example,

the si’s could be the bit description of S itself, and then
each Ti’s has only a single nonzero entry, of the form 2j

or 2−j (for as many different values of j as needed to
describe S with sufficient precision). Differently from [4], the
Ti’s in our setting contain no secret information – in particular
we do not require a sparse subset that sums up to S. The
ciphertext ~c from the original scheme is post-processed to yield
(~c, {~ui}Ni=1) where ~ui = ~c · Ti, and the decryption formula
becomes ~m← ~c−

⌈∑N
i=1 si · ~ui

⌋
mod p.

Importantly, the coefficients of the ~u’s are output with only
κ = dlog(N + 1)e bits of precision to the right of the binary

point, just enough to ensure that the rounding remains correct
in the decryption formula. For simplicity hereafter, we will
assume that the plaintext vector is ~m = 〈0, . . . , 0,m〉 – i.e.,
it has only one nonzero coefficient. Thus, the post-processed
ciphertext becomes (c, {ui}) (numbers rather than vectors).

C. Decryption Using a Restricted Depth-3 Circuit

For the rest of this section, the details of the particular
encryption scheme E are irrelevant except insofar as it has the
following decryption formula: The secret key is ~s ∈ {0, 1}N ,
and the ciphertext is post-processed to the form (c, {ui}),
and each ui is split into an integer part and a fractional
part, ui = u′i•u

′′
i , such that the fractional part has only

κ = dlog(N + 1)e bits of precision (namely, u′′i is a κ-bit
integer). The plaintext is recovered as:

m ← c−
∑

si · u′i︸ ︷︷ ︸
“simple part”

−
⌈
2−κ ·

∑
si · u′′i

⌋
︸ ︷︷ ︸
“complicated part”

modp. (1)

We now show that we can compute Equation (1) using a LA-
restricted circuit.
Lemma 3. Let p be a prime p > 2N2. Regarding the
“complicated part” of Equation (1), there is a univariate
polynomial f(x) of degree ≤ 2N2 such that f(

∑
si · u′′i ) =

d2−κ ·
∑
si · u′′i c mod p.

Proof: Since p > 2N2, there is a polynomial f of degree
at most 2N2 such that f(x) = d2−κ · xc mod p for all x ∈
[0, 2N2]. The lemma follows from the fact that

∑
si · u′′i ∈

[0, N · (2κ − 1)] ⊆ [0, 2N2].

Theorem 1. Let p be a prime p > 2N2. For any A ⊆ Zp
of cardinality at least 2N2 + 1, E’s decryption function
(Equation (1)) can be efficiently expressed as and computed
using a LA-restricted depth-3 circuit C of LA-degree at most
2N2 having at most 2N2 +N + 1 product gates.

Proof: First, consider the “complicated part”. By Lemma
3, there is a univariate polynomial f(x) of degree 2N2 such
that f(

∑
si · u′′i ) = d2−κ ·

∑
si · u′′i c mod p. Since all u′′i ∈

{0, . . . , 2N}, by Lemma 2, there is a multilinear symmetric
polynomial Mf (~x) taking 2N2 inputs such that

f
(∑

i

si · u′′i
)

= Mf

(
s
u′′1
1 02N−u

′′
1 , . . . , s

u′′N
N 02N−u

′′
N
)

for all ~s ∈ {0, 1}N , and moreover we can efficiently compute
Mf ’s representation as a LA-restricted depth-3 circuit C. By
Lemma 1, C has LA-degree at most 2N2 and has at most
2N2 + 1 product gates. We have proved the theorem for
the complicated part. To handle the “simple part” as an LA-
restricted circuit, we can re-write it as (c+a1 ·

∑
u′i)−

∑
(a1+

si)·u′i mod p with the constant term λ0 = (c+a1 ·
∑
u′i). The

circuit for the simple part has LA-degree 1 and N “product”
gates.

In Section IV-B, we show how to tweak the “generic”
lattice-based decryption further to allow a purely multilinear
symmetric decryption formula. (Above, only the complicated
part is multilinear symmetric.) While not essential to construct
leveled FHE schemes, this tweak enables interesting optimiza-
tions. For example, in IV-A we show that we can get a very



compact leveled FHE ciphertext – specifically, at one point, it
consists of a single MHE ciphertext – e.g., a single Elgamal
ciphertext!

III. LEVELED FHE FROM SWHE AND MHE

Here, we show how to take a SWHE scheme that has
restricted depth-3 decryption and a MHE scheme, and combine
them together into a “monstrous chimera” [17] to obtain
leveled FHE. The construction works much like the Elgamal-
based example given in the Introduction. That is, given a
SWHE ciphertext, we “recrypt” it by homomorphically eval-
uating its depth-3 decryption circuit, pre-processing the first
level of linear polynomials Lj(~s) (where ~s is the secret key)
by encrypting them under the MHE scheme, evaluating the
products under the MHE scheme, converting MHE ciphertexts
into SWHE ciphertexts of the same values by evaluating the
MHE’s scheme’s decryption function under the SWHE scheme
using the encrypted MHE secret key, and finally performing
the final sum (an interpolation) under the SWHE scheme. The
SWHE scheme only needs to be capable of evaluating the
MHE scheme’s decryption circuit, followed by a quadratic
polynomial. Contrary to the old blueprint, the required “homo-
morphic capacity” of the SWHE scheme is largely independent
of the SWHE scheme’s decryption function.

A. Notations

Recall that an encryption scheme E = (KeyGen,Enc,Dec,
Eval) with plaintext space P is somewhat-homomorphic
(SWHE) with respect to a class F of multivariate func-
tions2 over P , if for every f(x1, . . . , xn) ∈ F and every
m1, . . . ,mn ∈ P , it holds (with probability one) that

Dec(sk,Eval(pk, f, c1, . . . , cn)) = f(m1, . . . ,mn),

where (sk, pk) are generated by KeyGen(1λ) and the ci’s are
generated as ci ← Enc(pk,mi). We refer to F as the “ho-
momorphic capacity” of E . We say that E is multiplicatively
(resp. additively) homomorphic if all the functions in F are
naturally described as multiplication (resp. addition).

Given the encryption scheme E , we denote by CE(pk) the
space of “freshly-encrypted ciphertexts” for the public key pk,
namely the range of the encryption function for this public key.
We also denote by CE the set of freshly-encrypted ciphertexts
with respect to all valid public keys, and by CE,F the set of
“evaluated ciphertexts” for a class of functions F (i.e. those
that are obtained by evaluating homomorphically a function
from F on ciphertexts from CE ). That is (for implicit security
parameter λ), CE

def
=
⋃
pk∈KeyGen CE(pk), and

CE,F
def
=
{
Eval(pk, f,~c) : pk ∈ KeyGen, f ∈ F , ~c ∈ CE(pk)

}
B. Compatible SWHE and MHE Schemes

To construct “chimeric” leveled FHE, the component SWHE
and MHE schemes must be compatible:

2The class F may depend on the security parameter λ.

Definition 2 (Chimerically Compatible SWHE and MHE).
Let SWHE be an encryption scheme with plaintext space Zp,
which is somewhat homomorphic with respect to some class F .
Let MHE be a scheme with plaintext space P ⊆ Zp, which is
multiplicatively homomorphic with respect to another F ′.

We say that SWHE and MHE are chimerically compatible
if there exists a polynomial-size set L = {Lj} of polynomials
and polynomial bounds D and B such that the following hold:
• For every ciphertext c ∈ CSWHE,F , the function Dc(sk) =

SWHE.Dec(sk, c) can be evaluated by an L-restricted
circuit over Zp with L-degree D. Moreover, an explicit
description of this circuit can be computed efficiently
given c.

• For any secret key sk ∈ SWHE.KeyGen and any polyno-
mial Lj ∈ L we have Lj(sk) ∈ P .

• The homomorphic capacity F ′ of MHE includes all
products of D or less variables.

• The homomorphic capacity of SWHE is sufficient to
evaluate the decryption of MHE followed by a quadratic
polynomial (with polynomially many terms) over Zp.
Formally, the number of product gates in all the L-
restricted circuits from the first bullet above is at most
the bound B, and for any two vectors of MHE ciphertexts
~c = 〈c1, . . . cb〉 and ~c′ = 〈c′1, . . . c′b′〉 ∈ C

≤B
MHE,F ′ , the two

functions

DAdd~c,~c′(sk)
def
=

b∑
i=1

MHE.Dec(sk, ci)

+

b′∑
i=1

MHE.Dec(sk, c′i) mod p

DMul~c,~c′(sk)
def
=

( b∑
i=1

MHE.Dec(sk, ci)
)

×
( b′∑
i=1

MHE.Dec(sk, c′i)
)

mod p

are within the homomorphic capacity of SWHE – i.e.,
DAdd~c,~c′(sk),DMul~c,~c′(sk) ∈ F .

C. Chimeric Leveled FHE: The Construction

Let SWHE and MHE be chimerically compatible schemes.
We construct a leveled FHE scheme as follows:

FHE.KeyGen(λ, `): Takes as input the security parameter λ
and the number of circuit levels ` that the composed scheme
should be capable of evaluating. For i ∈ [1, `], run(

pk
(i)
SW , sk

(i)
SW

)
R← SWHE.KeyGen ,(

pk
(i)
MH , sk

(i)
MH

)
R← MHE.KeyGen .

Encrypt the i’th MHE secret key under the (i+ 1)’st SWHE
public key, sk

(i)

MH ← SWHE.Enc(pk
(i+1)
SW , sk

(i)
MH). Also en-

crypt the i’th SWHE secret key under the i’th MHE public
key, but in a particular format as follows: Recall that there
is a polynomial-size set of polynomials L such that SWHE



decryption can be computed by L-restricted circuits. To en-
crypt sk(i)SW under pk(i)MH , compute mij ← Lj(sk

(i)
SW ) for all

Lj ∈ L, and then encrypt it cij ← MHE.Enc(pk
(i)
MH ,mij).

Let sk
(i)

SW denote the collection of all the cij’s. The public
key pkFH consists of (pk

(i)
SW , pk

(i)
MH) and the encrypted secret

keys (sk
(i)

SW , sk
(i)

MH) for all i. The secret key skFH consists
of sk(i)SW for all i.

FHE.Enc(pkFH ,m): Takes as input the public key pkFH and
a message in the plaintext space of the SWHE scheme. It
outputs SWHE.Enc(pk

(1)
SW ,m).

FHE.Dec(skFH , c): Takes as input the secret key skFH and a
SWHE ciphertext. Suppose the ciphertext is encrypted under
pk

(i)
SW . It is decrypted directly using SWHE.Dec(sk

(i)
SW , c).

FHE.Recrypt(pkFH , c): Takes as input the public key and
a ciphertext c that is a valid “evaluated SWHE ciphertext”
under pk(i)SW , and outputs a “refreshed” SWHE ciphertext c′,
encrypting the same plaintext but under pk(i+1)

SW . It works as
follows:

Circuit-generation. For a SWHE ciphertext c, generate a
description of the L-restricted circuit C over Zp that computes
the decryption of c. Denote it by Dec(sk, c) = Cc(sk)

def
=

λ0 +
∑t
k=1 λk

∏
Lj∈Sk Lj(sk) mod p

Products. Pick up from the public key the encryptions under
the MHE public key pk(i)MH of the values Lj(sk

(i)
SW ). Use the

homomorphism of MHE to compute MHE encryptions of all
the terms λk ·

∏
Lj∈Sk Lj(sk

(i)
SW ). Denote the set of resulting

MHE ciphertexts by c1, . . . , ct.

Translation. Pick up from the public key the encryption under
the SWHE public key pk(i+1)

SW of the MHE secret key sk(i)MH .
For each MHE ciphertext ci from the Products step, use the
homomorphism of SWHE to evaluate the function Dci(sk) =
MHE.Dec(sk, ci) on the encrypted secret key. The results are
SWHE ciphertexts c′1, . . . c

′
t, where c′j encrypts the value λk ·∏

Lj∈Sk Lj(sk
(i)
SW ) under pk(i+1)

SW .

Summation. Use the homomorphism of SWHE to sum up all
the c′j’s and add λ0 to get a ciphertext c∗ that encrypts under
pk

(i+1)
SW the value λ0 +

∑t
k=1 λk

∏
Lj∈Sk Lj(sk

(i)
SW ) mod

p = SWHE.Dec(sk
(i)
SW , c). Namely, c∗ encrypts under

pk
(i+1)
SW the same value that was encrypted in c under pk(i)SW .

FHE.Add(pkFH , c1, c2) and FHE.Mult(pkFH , c1, c2): Take
as input the public key and two ciphertexts that are valid
evaluated SWHE ciphertexts under pk(i)SW . Ciphertexts within
the SWHE scheme (at any level) may be added and multiplied
within the homomorphic capacity of the SWHE scheme. Once
the capacity is reached, they can be recrypted and then at least
one more operation can be applied.

Theorem 2. If SWHE and MHE are chimerically compatible
schemes, then the above scheme FHE is a leveled FHE scheme.

Also, if both SWHE and MHE are semantically secure, then
so is FHE.

Correctness follows in a straightforward manner from the def-
inition of chimerically compatible schemes. Security follows
by a standard hybrid argument similar to Theorem 4.2.3 in
[3]. We omit the details.

IV. OPTIMIZATIONS

In the Products step of the Recrypt process (see Section
III), we compute multiple products homomorphically within
the MHE scheme. In Section IV-A, we provide an optimization
that allows us to compute only a single product in the
Products step. In Section IV-B, we extend this optimization
so that the entire leveled FHE ciphertext after the Products
step can consist of a single MHE ciphertext.

A. Computing Only One Product

For now, let us ignore the “simple part” of our decryption
function (Equation 1), which is linear and therefore does not
involve any “real products”.

The products in the “complicated part” all have a special
form. Specifically, by Theorem 1 and the preceding lemmas,
for secret key ~s ∈ {0, 1}N , ciphertext (c, {ui}), set A ⊂ Zp
with |A| > 2N2, and fixed scalars {λj} associated to a
multilinear symmetric polynomial Mf , the products are all
of the form λj · P (aj) for all a ∈ A, where

P (z) =
∏
i

(z + si)
u′′i · (z + 0)2N−u

′′
i .

We will show how to choose the aj’s so that we can compute
P (aj) for all j given only P (a1). This may seem surprising,
but observe that the P (aj)’s are highly redundant. Namely,
if we consider the integer v =

∑
si=1 u

′′
i (which is at most

2N2), then we have
P (aj) = (aj + 1)v · (aj + 0)2N

2−v.

Knowing a1, the value of P (a1) contains enough informa-
tion to deduce v, and then knowing aj we can get P (aj)
for all j. To be able to compute the P (aj)’s efficiently from
P (a1), we choose the aj’s so that for all j > 1 we know
integers (wj , ej) such that:

aj = wj · a
ej
1 and aj + 1 = wj · (a1 + 1)ej .

We store (wj , ej) in the public key, and then compute P (aj) =

w2N2

j · P (a1)ej .
Importantly for our application to chimeric FHE, we can

compute an encryption of P (aj) from an encryption of P (a1)
within the MHE scheme – simply use the multiplicative
homomorphism to exponentiate by ej (using repeated squaring
as necessary) and then multiply the result by w2N2

j .
Generating suitable tuples (aj , wj , ej) for j > 1 from an

initial value a1 is straightforward: We choose the ej’s arbitrar-
ily and then solve for the rest. Namely, we generate distinct
ej’s, different from 0,1, then set aj ← a

ej
1 /((a1 + 1)ej − aej1 )

and wj = aj/a
ej
1 . Observe that aj + 1 = (a1 + 1)ej/((a1 +

1)ej − aej1 ) – i.e., the ratio (aj + 1)/aj = ((a1 + 1)/a1)ej , as
required.



Some care must be taken to ensure that the values aj , aj+1
are in plaintext space of the MHE scheme – e.g., for Elgamal
they need to be quadratic residues. Recall the basic fact that
for a safe prime p there are (p − 3)/4 values a for which
a, a+ 1 ∈ QR(p) (see Lemma 5). Therefore, finding suitable
a1, a1 +1 ∈ QR(p) is straightforward. Since aej1 , (a1 +1)ej ∈
QR(p), we have
aj , aj + 1 ∈ QR(p) ⇔ (a1 + 1)ej − aej1 ∈ QR(p)

⇔ ((a1 + 1)/a1)ej − 1 ∈ QR(p).

If (a1 + 1)/a1 generates QR(p) (which is certainly true
if p is a safe prime), then (re-using the basic fact above)
we conclude that aj , aj + 1 ∈ QR(p) with probability
approximately 1/2 over the choices of ej .

Observe that the amount of extra information needed in
the public key is small. The ej’s need not be truly random
– indeed, by an averaging argument over the choice of a1,
one will quickly find an a1 for which suitable ej’s are O(1)-
dense among very small integers. Hence it is sufficient to add
to the public key only O(log p) bits to specify a1.

B. Short FHE Ciphertexts: Decryption as a Pure Symmetric
Polynomial

Here we provide an optimization that allows us to compress
the entire leveled FHE ciphertext down to a single MHE ci-
phertext – e.g., a single Elgamal ciphertext! (The optimization
above only compresses only representation of the “complicated
part” of Equation 1, not the “simple part”.) Typically, a MHE
ciphertext will be much much shorter than a SWHE ciphertext:
a few thousand bits vs. millions of bits.

The main idea is that we do not need the full ciphertext
(c, {u′i}, {u′′i }) to recover m if we know a priori that m
is in a small interval – e.g., m ∈ {0, 1}. Rather, we can
choose a “large-enough” polynomial-size prime r, so that
we can recover m just from ([c]r, {[u′i]r}, {[u′′i ]r}), where
[x]r denotes x mod r ∈ {0, . . . , r − 1}. Moreover, after
reducing the ciphertext components modulo r, we can invoke
Lemma 2 to represent decryption as a purely multilinear
symmetric polynomial, whose output after the product step can
be represented by a single product P (a1) (like the complicated
part in the optimization of Section IV-A).
Lemma 4. Let prime p = ω(N2). There is a prime r = O(N)
and a univariate polynomial f(x) of degree O(N2) such that,
for all ciphertexts (c, {u′i}, {u′′i }) that encrypt m ∈ {0, 1}, we
have m = f(tr) mod p where

tr
def
= [2κ · c]r +

∑
isi · [−2κ · u′i − u′′i ]r. (2)

Proof: Let t = 2κ
(
c−
∑
si ·u′i

)
−
∑
si ·u′′i . The original

decryption formula (Equation 1) is

m = c−
∑

si · u′i − b2−κ ·
∑

si · u′′i e = b2−κ · te mod p

Thus, m can be recovered from t. Since there are only 2
possibilities for m, the (consecutive) support of t has size
2κ+1 = O(N). Set r to be a prime ≥ 2κ+1. Since the mapping
x 7→ [x]r has no collisions over the support of t, t can be
recovered from [t]r. Note that [t]r = [tr]r. Thus m can be

recovered from tr (via [tr]r = [t]r, then t). Since there are
O(N · r) = O(N2) possibilities for tr, the lemma follows.
Theorem 3. Let prime p = ω(N2). There is a prime r =
O(N) and a multilinear symmetric polynomial M such that,
for all “hashed” ciphertexts ([2κ · c]r, {[−2κ ·u′i−u′′i ]r}) that
encrypt m ∈ {0, 1}, we have

m = M
(

1, . . . , 1︸ ︷︷ ︸
[2κ·c]r

, 0, . . . , 0︸ ︷︷ ︸
r−[2κ·c]r

, . . . , s1, . . . , s1︸ ︷︷ ︸
[−2κ·u′1−u′′1 ]r

, 0, . . . , 0,︸ ︷︷ ︸
r−[−2κ·u′1−u′′1 ]r

. . . , sN , . . . , sN︸ ︷︷ ︸
[−2κ·u′N−u′′N ]r

, 0, . . . , 0︸ ︷︷ ︸
r−[−2κ·u′N−u′′N ]r

)
mod p

Proof: This follows easily from Lemmas 4 and 2.
Thus, decryption can be turned into a purely multilin-

ear symmetric polynomial M whose product gates output
λj · P (aj) (for known ciphertext-independent λj’s), where
P (z) is similar to the polynomial described in Section IV-A.
Using the optimization of Section IV-A, we can compress the
entire leveled FHE ciphertext down to a single MHE ciphertext
that encrypts P (a1).
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APPENDIX

INSTANTIATIONS OF CHIMERIC FHE

A. The Homomorphic Capacity of SWHE Schemes

Our instantiations are mildly sensitive to the tradeoff be-
tween the parameters of the SWHE scheme and its homo-
morphic capacity. Recall that when used with plaintext space
Zp, the SWHE schemes that we consider have secret key
~s ∈ {0, 1}N and decryption formula3 for post-processed
ciphertexts (c, {u′i}, {u′′i }):

m = c+

N∑
i=1

si · u′i +
⌈
2−κ ·

N∑
i=1

si · u′′i
⌋

mod p, (3)

with κ = dlog(N + 1)e, u′i ∈ Zp and u′′i ∈ {0, 1, . . . , 2κ}.
Below we say that a scheme has threshold-type decryption if
it has this decryption formula.

We are interested in the tradeoff between the number N
of secret-key bits and the degree of the polynomials that the
scheme can evaluate homomorphically. For our instantiations,
we only need the number of key-bits to depend polynomially
on the degree. Specifically, we need a polynomial bound K,
such that the scheme with plaintext space Zp with security
parameter λ can be made to support α-degree polynomials
with up to 2β terms using secret keys of no more than N =
K(λ, log p, α, β) bits.

Below we say that a SWHE scheme is “homomorphic for
low-degree polynomials” if it has a polynomial bound on the
key-size as above. It can be verified that all the known lattice-
based SWHE schemes meet this condition.

B. Elgamal-based Instantiation

In the Introduction, we specified (in a fair amount of detail)
an instantiation of chimeric leveled FHE that uses Elgamal
as the MHE scheme. Here, we provide a supporting lemmas

3This formula differs from Equation (1) in that we add rather than subtract
the sums. This change was done to simplify notations in some of the arguments
below, and it entails only a slight modification of the scheme.

and theorems to show that Elgamal is chimerically compatible
with known SWHE schemes, as needed for the chimeric
combination to actually work.
Theorem 4. Let p = 2q + 1 be a safe prime such that DDH
holds in QR(p), and let SWHE be an encryption scheme
with message space Zp, which is homomorphic for low-degree
polynomials and has threshold-type decryption. Then SWHE
is chimerically compatible with Elgamal encryption modulo p
over plaintext space QR(p).

Proof: Denote the security parameter by λ and let α =
poly(λ) be another parameter (to be set later) governing the
degree of polynomials that can be homomorphically evaluated
by the scheme. The scheme SWHE can then be set to support
polynomials of degree up to α having at most 2α terms, using
a secret key ~s ∈ {0, 1}N of size N = K(λ, log p, α) for a
polynomial K, with decryption formula Equation (3). Since
p must be super polynomial in λ (for DDH to hold), then in
particular 2N2 < p and we can use Theorem 1.

We thus conclude that the for any A ⊆ Zp of cardinality
2N2 + 1, given a SWHE ciphertext (c, {u′i}, {u′′i }) we can
compute efficiently a LA-restricted depth-3 circuit C of LA-
degree at most 2N2 and at most 2N2 +N + 1 product gates,
such that C(~s) = SWHE.Dec~s (c, {u′i}, {u′′i }). We will thus
use D = 2N2 and B = 2N2 +N + 1 as the bounds that are
needed for Definition 2.

Next we need to establish that one can choose A so that,
for any sk ∈ SWHE.KeyGen and any polynomial Lj ∈ LA,
Lj(sk) is in the plaintext space of our multiplicatively homo-
morphic scheme. In Lemma 5 below, we show that there are
q− 1 = (p− 3)/4 values a such that a, a+ 1 ∈ QR(p). Since
N is polynomial and 2N2 + 1� q, we can populate A with
N2 + 1 such values efficiently. The value aj + xi for aj ∈ A
and secret key bit xi is always in QR(p), which is the Elgamal
plaintext space.

In this construction we trivially get the property that the
MHE scheme (i.e., Elgamal) can evaluate the D multipli-
cations needed by the circuits C, since the multiplicative
homomorphic capacity of Elgamal is infinite.

It remains to show that the homomorphic capacity of the
SWHE scheme is sufficient to evaluate Elgamal decryption
followed by one operation (i.e., the last bullet in Definition 1).
It suffices to show that Elgamal decryption can be computed
using a polynomial of degree α with at most 2α monomials, so
our degree parameter α. To prepare for decryption, we post-
process each Elgamal ciphertext as follows: Given a ciphertext
(y = gr, z = m ·g−er) ∈ Z2

p, we compute yi = y2
i−1 mod p

for i = 0, 1, . . . , dlog qe−1, and the post-processed ciphertext
is 〈z, y0, . . . , yτ−1〉 with τ = dlog qe. Given an Elgamal secret
key e ∈ Zq with binary representation eτ−1 . . . e1e0 (where
τ = dlog qe, decryption of the post-processed ciphertext
becomes

MHE.Dec(e; z, y0, . . . , yτ−1) = z·
τ−1∏
i=0

(ye·2
i

) = z·
τ−1∏
i=0

(ei·yi+1)

(4)
Being overly conservative and treating z, y0, . . . , yτ−1 as



variables; then the degree of the polynomial above is 2τ + 1,
and it has 2τ monomials. Hence the degree parameter α as
α = 4 dlog qe + 2, we get a scheme whose homomorphic
capacity is sufficient for Elgamal decryption followed by one
operation.

If remains to see that this choice of parameters is consistent.
Note that the only constraints that we use in this proof are that
p = λω(1) (so that DDH is hard), (p−1)/2 = q > 2N2 +1 =
poly(λ, log q, α) (in order to be able to use Theorem 1) and
α > 4 dlog qe + 2 (to get sufficient homomorphic capacity).
Clearly, if p is exponential in λ (so α is polynomial in λ) then
all of these constraints are satisfied.
Lemma 5. Let p be a prime, and let S = {(X,Y ) : X =
Y +1;X,Y ∈ QR(p)}. Then, |S| = (p−3)/4 if p = 3 mod 4,
and |S| = (p− 5)/4 if p = 1 mod 4.

Proof: Let T = {(u, v) : u 6= 0, v 6= 0, u2 − v2 = 1 mod
p}. Since X and Y each have exactly two nonzero square
roots if they are quadratic residues, we have that |T | = 4 · |S|.
It remains to establish the cardinality of T .

For each pair (u, v) ∈ T , let auv = u + v. We claim that
distinct pairs in T cannot have the same value of auv . In
particular, each auv completely determines both u and v as
follows. We have u2 − v2 = 1 → (u − v)(u + v) = 1 →
u − v = 1/auv , and therefore u = (auv + a−1uv )/2, and v =
(auv−a−1uv )/2. We therefore have |U | = |T |, where U = {a 6=
0 : a+ a−1 6= 0, a− a−1 6= 0}.

We have that a ∈ U , unless a = 0, a2 = −1 mod p, or
a = ±1. If p = 1 mod 4, then −1 ∈ QR(p), and therefore
there are 5 prohibited values of a – i.e., |U | = p − 5. If
p = 3 mod 4, then −1 /∈ QR(p), and therefore |U | = p − 3.

C. Leveled FHE Based on Worst-Case Hardness

We next describe an instantiation where both the SWHE
and the MHE schemes are lattice-based encryption schemes
with security based (quantumly) on the hardness of worst-
case problems over ideal lattices, in particular ideal-SIVP.
This scheme could be Gentry’s SWHE scheme [4], [5] one
of its variants [6], [14], [15], or one of the more recent
proposals based on the ring-LWE problem [1], [11]. All these
schemes are homomorphic for low-degree polynomials and
have threshold-type decryption, in the sense of Section A.

The main idea of this construction is to use an additively ho-
momorphic encryption (AHE) scheme (e.g., one using lattices)
as our MHE scheme, by working with discrete logarithms. For
a multiplicative group G with order q and generator g, we can
view an additively homomorphic scheme AHE with plaintext
space Zq as a multiplicative homomorphic scheme MHE with
plaintext space G: In the MHE scheme, a ciphertext c is
decrypted as MHE.Decrypt(c)← gAHE.Decrypt(c). The additive
homomorphism mod q thus becomes a multiplicative homo-
morphism in G. We can therefore use MHE as a component
in chimeric leveled FHE, assuming it is compatible with a
suitable SWHE scheme. One caveat is that MHE’s Encrypt
algorithm is not obvious. Presumably, to encrypt an element
x ∈ G, we encrypt its discrete log using AHE’s Encrypt

algorithm, but this requires computing discrete logs in G.
Fortunately, in our instantiation we can choose a group G of
polynomial size, so computing discrete log in G can be done
efficiently.

The main difficulty is to set the parameters so that the
component schemes each have enough homomorphic capacity
to do their jobs.

This sort of compatibility was easy for the Elgamal-based
instantiation, since the parameters of the Elgamal scheme
do not grow with the multiplicative homomorphic capacity
required of the Elgamal scheme; Elgamal’s multiplicative
homomorphic capacity is infinite, regardless of parameters.
On the other hand, the additive homomorphic capacity of a
lattice-based scheme is limited, as system parameters must
grow (albeit slowly) to allow more additions. What makes it
possible to set the parameters is the fact that such schemes
can handle a super-polynomial number of additions.

Below let us fix some SWHE construction which is ho-
momorphic for low-degree polynomials and has threshold-
type decryption (e.g., Gentry’s scheme [4], [5]). For our
construction we will use a polynomial-size plaintext space,
namely Zp for some p = poly(λ). In more detail, we will
use two instances of the same scheme, a “large instance”,
denoted Lrg, as the SWHE of our Chimeric construction and
a “small instance”, denoted Sml for the MHE of our Chimeric
construction. The plaintext space for Lrg is set as Zp for a
small prime p = poly(λ), and the plaintext space for Sml is
set as Zq for q = p− 1.

We will use the small instance as a multiplicative homo-
morphic encryption scheme with plaintext space Z∗p. Below
let g be a generator of Z∗p. Encryption of a plaintext x ∈ Z∗p
under this MHE scheme consists of first computing the dis-
crete logarithm of x to the base g, i.e., e ∈ Zq such that
ge = x (mod p), then encrypting e under Sml. Similarly,
MHE decryption of a ciphertext c consists of using the “native
decryption” of Sml to recover the “native plaintext” e ∈ Zq ,
then exponentiating x = ge mod p.

The homomorphic capacity of Lrg must be large enough
to evaluate the decryption of Sml followed by exponentiation
mod p and then a quadratic polynomial. The parameters of Sml
can be chosen much smaller, since it only needs to support
addition of polynomially many terms and not even a single
multiplication.

1) Decryption under Sml: The small instance has n bits of
secret key, where n is some parameter to be determined later
(selected to support large enough homomorphic capacity to
evaluate linear polynomials with polynomially many terms.)
Since native decryption of Sml is of the form of Equation (3),
decryption under the MHE scheme has the following formula

MHE.Decsk(c) = gc · g
∑n
i=1 u

′
isi · gd2

−κ∑n
i=1 u

′′
i sic mod p

(5)
where (c, {u′i•u′′i }) is the post-processed ciphertext (with
u′i ∈ Zq and u′′i ∈ Z2κ , and κ = dlog(n+ 1)e). Below we
show how this formula can be evaluated as a rather low-degree
arithmetic circuit.



a) The complicated part.: To evaluate the “complicated
part”, d2−κ

∑n
i=1 u

′′
i sic, as an arithmetic circuit mod p (with

input the bits si), we will construct a mod-p circuit that
outputs the binary representation of the sum. We have n binary
numbers, each with κ bits, and we need to add them over
the integers and then ignore the lower κ bits. Certainly, each
bit of the result can be expressed mod-p as a multilinear
polynomial of degree only n · κ over the n · κ bits of the
addends. It is challenging, however, to show that these low-
degree representations can actually be computed efficiently.

In any case, we can compute the sum using polynomials
of degree n · κc for small c, easily as follows: Consider
a single column ~x ∈ {0, 1}n of the sum. Each bit in the
binary representation of the Hamming weight of ~x can be
expressed as a mod-p multilinear symmetric polynomial of
degree n over ~x. After using degree n to obtain the binary
representation of the Hamming weight of each column, it
only remains to add the κ κ-bit Hamming weights together
(each Hamming weight shifted appropriately depending on the
significance of its associated column) using degree only κc.
Adding numbers κ κ-bit numbers is in NC1, and in particular
can be accomplished with low degree using the “3-for-2” trick
(see [8]), repeatedly replacing each three addends by two
addends that correspond to the XOR and CARRY (and hence
have the same sum), each replacement only costing constant
degree, and finally summing the final two addends directly.
Over Zp, the 3-for-2 trick is done using the formulas

XOR(x, y, z) = 4xyz − 2(xy + xz + yz) + x+ y + z

CARRY (x, y, z) = xy + xz + yz − 2xyz

b) The simple part and exponentiation.: Although it is
possible to compute the simple part similarly to the com-
plicated part, it is easier to just push this computation into
the exponentiation step. Specifically, we now have a κ-bit
number v0 that we obtained as the result of the “complicated
part”, and we also have the dlog qe-bit numbers vi = u′isi
for i = 1, . . . , n (all represented in binary), and we want to
compute gc·g

∑n
i=0 vi · mod p. Denote the binary representation

of each vi by (vit . . . vi1vi0), namely vi =
∑
j vij2

j . Then we
compute

gc ·
∏
i,j

(g2
j

)vij = gc ·
∏
i,j

(
vi,j · g2

j

+ (1− vij) · 1
)

=

κ∏
j=0

(
1 + v0,j · (g2

j

− 1)
)

︸ ︷︷ ︸
“complicated part′′

· gc
∏
i,j

(
1 + vi,j · (g2

j

− 1)
)

︸ ︷︷ ︸
“simple part′′

The terms gc and (g2
j − 1) are known constants in Zp, hence

we have a representation of the decryption formula as an
arithmetic circuit mod p.

To bound the degree of the complicated part, notice that v0
has κ bits, each a polynomial of degree at most n · poly(κ),
hence the entire term has degree bounded by n · poly(κ).
For the simple part, all the vi’s together have n dlog qe bits
(each is just a variable), so the degree of that term is bounded

by just n dlog qe. Hence the total degree of the decryption
formula is Õ(n), assuming q is quasi-polynomial in n. One
can also verify that the number of terms is 2Õ(n). (Known
lattice-based SWHE schemes have n = Õ(λ), in which case
Sml’s decryption has degree Õ(λ).)

2) The SWHE scheme Lrg.: The large instance has N bits
of secret key, where N is some parameter to be determined
later, selected to support large enough homomorphic capacity
to be compatible with Sml. As explained in Section II, the
decryption of Lrg can be expressed as a restricted depth-3
circuit of degree at most 2N2 and with at most 2N2 +N + 1
product gates. Note that the number of summands in the top
addition is at most 2N2 +N + 1 < 3N2.

3) Setting the parameters.:
Lemma 6. Let Lrg and Sml be as above. We can choose
the parameters of Lrg and Sml so that Lrg is chimerically
compatible with the MHE derived from Sml.

Proof: Denoting the security parameter by λ, below we
choose the plaintext spaces and parameters α, β, where Lrg
can support polynomials of degree up to α with 2α terms,
Sml can support linear polynomials with up to 2β terms, so as
to get chimerically compatible schemes. Note that making the
plaintext spaces of the two schemes compatible is simple, all
we need to do is choose a prime p and set q = p− 1, and let
the plaintext spaces of Lrg,Sml be Zp and Zq , respectively.
In terms of size constraints on the parameters, we have the
following:
• p > 2N2, so that we can use Theorem 1.
• p = poly(λ), so that we can compute discrete logs

modulo p efficiently.
• β ≥ log(2N2) = 2 logN+1, since the restricted depth-3

circuits for the decryption of Lrg all have degree at most
2N2, hence we need an MHE scheme that supports 2N2

products, which means that Sml should support linear
functions with 2N2 terms.

• α is at least twice the degree of Sml’s decryption, so
that we can compute a multiplication within Lrg after
evaluating Sml’s decryption function.

Up front, we are promised polynomial bounds KSml,KLrg such
that the key-size of Sml is bounded by n ≤ KSml(λ, log q, β)
and the key-size of Lrg is bounded by N ≤ KLrg(λ, log p, α).

Assuming N = poly(λ) (we establish this later), we can
meet the first three constraints by choosing a prime p ∈ [2N2+
1, 4N2] (such a prime must exist and can be found efficiently)
and β = log p. Then KSml(λ, log q, β) = o(λcSml+ε) for any
ε > 0 and some constant cSml. We argued that before that
when Sml has n-bit keys, decryption can be computed with
degree Õ(n·(logc2 n+log q)) for some constant c2. Therefore,
still assuming that N = poly(λ), all of the constraints can be
satisfied with α = θ(λcSml+ε) for any ε > 0. But then of course
N can be poly(λ) since it is bounded by KLrg(λ, log p, α).

Using Gentry’s scheme and proof [4], [5] we get:
Corollary 1. There exists a leveled FHE, whose security is
reducible via quantum reduction to the worst-case hardness of
S(I)VP in ideal lattices, ideal-SIVP. �


